DEVELOPMENT OF NEW METHODS FOR THE REDUCTION OF UF

M. Adelhelm¹, W. Bacher², F.S. Becker³, H. Gerster⁴, E.-G. Höhn¹, E. Jacob⁴

¹PH Ludwigsburg, Abt. Chemie, Postfach 220, D-7140 Ludwigsburg

²Kernforschungszentrum, Abt. IKVT, Postfach 3640, D-7500 Karlsruhe

³Projektgruppe für Laserforschung der Max-Planck-Gesellschaft,

D-8046 Garching

⁴MAN - Neue Technologie, Abt. Physikalische Chemie, Postfach 500 620, D-8000 München 50

Methods for the preparation of UF_5 are discussed with respect to the formation of B-UF₅. The reduction of UF₆ by HBr in liquid HF /1/ can be used to synthesize pure B-UF₅ even if greater amounts are required.

Details of the direct photolysis of UF₆ without scavenger /2/ are presented In an advanced version a simplified photo-reactor is used which consists of a stainless steel vessel with a diameter of 100 mm and a volume of about 3 liters. UV-light of a 1000 W super high pressure mercury lamp is used to photolyze about 50 g of high purity UF₆ within 12 h, giving pure β -UF₅ in about 90 % yield without intermediately removing the F₂ formed.

Two simple new methods have been developed to synthesize $B-UF_5$. UF_6 is reduced by H_2 in liquid anhydrous HF at room temperature. This reaction which

In addition, it was found that anhydrous HCl catalyzes the reaction, too. 200 mbar of HCl were added, together with 4 bar H_2 , to UF_6 in liquid HF, and the reaction mixture was magnetically stirred for 66 hours. β -UF₅ could be obtained in 91 % yield as a very pure product. This latter method is recommended for large scale production of β -UF_c.

Reactions of UF $_6$ with other reducing agents like HCl, SO $_2$, and CO in liquid HF were studied. These reactions give poor yields or impure products.

UF₆ yields with CO and Au in the presence of HF a carbonyl compound of Au with the very high v_{CO} at 2205 cm⁻¹. Analytical and spectroscopic data suggest the formula Au(CO) ${}_{2}U_{2}F_{11}$.

E. Jacob, Z. Anorg. Allg. Chem. <u>400</u> (1973) 45.
F.S. Becker, E. Jacob, Angew. Chem. Int. Ed. Engl. 19 (1980) 227